Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(12): 6250-6264, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491001

RESUMO

Hydroxytyrosol (HT; 3,4-dihydroxyphenyl ethanol) is an important functional polyphenol in olive oil. Our study sought to evaluate the protective effects and underlying mechanisms of HT on obesity-induced cognitive impairment. A high-fat and high-fructose-diet-induced obese mice model was treated with HT for 14 weeks. The results show that HT improved the learning and memory abilities and enhanced the expressions of brain-derived neurotrophic factors (BDNFs) and postsynaptic density proteins, protecting neuronal and synaptic functions in obese mice. Transcriptomic results further confirmed that HT improved cognitive impairment by regulating gene expression in neural system development and synaptic function-related pathways. Moreover, HT treatment alleviated neuroinflammation in the brain of obese mice. To sum up, our results indicated that HT can alleviate obesity-induced cognitive dysfunction by enhancing BDNF expression and alleviating neuroinflammation in the brain, which also means that HT may become a potentially useful nutritional supplement to alleviate obesity-induced cognitive decline.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Obesos , Doenças Neuroinflamatórias , Obesidade/metabolismo , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
2.
Cell Rep ; 42(5): 112499, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37178122

RESUMO

Physical activity is associated with beneficial adaptations in human and rodent metabolism. We studied over 50 complex traits before and after exercise intervention in middle-aged men and a panel of 100 diverse strains of female mice. Candidate gene analyses in three brain regions, muscle, liver, heart, and adipose tissue of mice indicate genetic drivers of clinically relevant traits, including volitional exercise volume, muscle metabolism, adiposity, and hepatic lipids. Although ∼33% of genes differentially expressed in skeletal muscle following the exercise intervention are similar in mice and humans independent of BMI, responsiveness of adipose tissue to exercise-stimulated weight loss appears controlled by species and underlying genotype. We leveraged genetic diversity to generate prediction models of metabolic trait responsiveness to volitional activity offering a framework for advancing personalized exercise prescription. The human and mouse data are publicly available via a user-friendly Web-based application to enhance data mining and hypothesis development.


Assuntos
Adaptação Fisiológica , Transcriptoma , Masculino , Pessoa de Meia-Idade , Humanos , Feminino , Camundongos , Animais , Transcriptoma/genética , Obesidade/metabolismo , Aclimatação , Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo
3.
Science ; 377(6613): 1399-1406, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36137043

RESUMO

Tissue-tissue communication by endocrine factors is a vital mechanism for physiologic homeostasis. A systems genetics analysis of transcriptomic and functional data from a cohort of diverse, inbred strains of mice predicted that coagulation factor XI (FXI), a liver-derived protein, protects against diastolic dysfunction, a key trait of heart failure with preserved ejection fraction. This was confirmed using gain- and loss-of-function studies, and FXI was found to activate the bone morphogenetic protein (BMP)-SMAD1/5 pathway in the heart. The proteolytic activity of FXI is required for the cleavage and activation of extracellular matrix-associated BMP7 in the heart, thus inhibiting genes involved in inflammation and fibrosis. Our results reveal a protective role of FXI in heart injury that is distinct from its role in coagulation.


Assuntos
Proteína Morfogenética Óssea 7 , Fator XI , Insuficiência Cardíaca , Fígado , Miocárdio , Animais , Proteína Morfogenética Óssea 7/metabolismo , Fator XI/genética , Fator XI/metabolismo , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Inflamação/genética , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miocárdio/patologia , Proteólise
4.
J Agric Food Chem ; 70(32): 9948-9960, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917470

RESUMO

Aromatic aldehydes find extensive applications in food, perfume, pharmaceutical, and chemical industries. However, a limited natural enzyme selectivity has become the bottleneck of bioconversion of aromatic aldehydes from natural phenylpropanoid acids. Here, based on the original structure of feruloyl-coenzyme A (CoA) synthetase (FCS) from Streptomyces sp. V-1, we engineered five substrate-binding domains to match specific phenylpropanoid acids. FcsCIAE407A/K483L, FcsMAE407R/I481R/K483R, FcsHAE407K/I481K/K483I, FcsCAE407R/I481R/K483T, and FcsFAE407R/I481K/K483R showed 9.96-, 10.58-, 4.25-, 6.49-, and 8.71-fold enhanced catalytic efficiency for degrading CoA thioesters of cinnamic acid, 4-methoxycinnamic acid, 4-hydroxycinnamic acid, caffeic acid, and ferulic acid, respectively. Molecular dynamics simulation illustrated that novel substrate-binding domains formed strong interaction forces with substrates' methoxy/hydroxyl group and provided hydrophobic/alkaline catalytic surfaces. Five recombinant E. coli with FCS mutants were constructed with the maximum benzaldehyde, p-anisaldehyde, p-hydroxybenzaldehyde, protocatechualdehyde, and vanillin productivity of 6.2 ± 0.3, 5.1 ± 0.23, 4.1 ± 0.25, 7.1 ± 0.3, and 8.7 ± 0.2 mM/h, respectively. Hence, our study provided novel and efficient enzymes for the bioconversion of phenylpropanoid acids into aromatic aldehydes.


Assuntos
Enoil-CoA Hidratase , Escherichia coli , Acil Coenzima A , Aldeídos , Ácidos Cumáricos/química , Enoil-CoA Hidratase/química , Escherichia coli/genética
6.
J Agric Food Chem ; 69(14): 4134-4143, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33813825

RESUMO

Rhodobacter sphaeroides is a non-sulfur purple bacterium with great metabolic versatility, capable of producing a variety of valuable compounds that include carotenoids and CoQ10. In order to enhance lycopene production, we deleted the photosynthetic gene cluster repressor ppsR from a lycopene-producing Rb. sphaeroides strain (RL1) constructed in a previous study to break the control of carotenoid synthesis by the oxygen level. Also, lycopene production was further increased by overexpression of the activator prrA. The superior lycopene producer DppsR/OprrA thus obtained had a high growth rate and a lycopene production of 150.15 mg/L with a yield of 21.45 mg/g dry cell weight (DCW) under high oxygen conditions; these values were ≥6.85-fold higher than those of RL1 (19.13 mg/L; 3.32 mg/g DCW). Our findings indicate that elimination of oxygen repression led to more efficient lycopene production by DppsR/OprrA and that its increased productivity under high oxygen conditions makes it a potentially useful strain for industrial-scale lycopene production.


Assuntos
Rhodobacter sphaeroides , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Licopeno , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
7.
Mol Syst Biol ; 17(1): e9684, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417276

RESUMO

To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/genética , Glucose/efeitos adversos , Resistência à Insulina/genética , MAP Quinase Quinase 6/genética , Proteínas Nucleares/genética , Animais , Modelos Animais de Doenças , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Lipidômica , Masculino , Camundongos , Fosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo
8.
Mol Metab ; 30: 30-47, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767179

RESUMO

OBJECTIVE: Lipocalin-2 (LCN2) is a secreted protein involved in innate immunity and has also been associated with several cardiometabolic traits in both mouse and human studies. However, the causal relationship of LCN2 to these traits is unclear, and most studies have examined only males. METHODS: Using adeno-associated viral vectors we expressed LCN2 in either adipose or liver in a tissue specific manner on the background of a whole-body Lcn2 knockout or wildtype mice. Metabolic phenotypes including body weight, body composition, plasma and liver lipids, glucose homeostasis, insulin resistance, mitochondrial phenotyping, and metabolic cage studies were monitored. RESULTS: We studied the genetics of LCN2 expression and associated clinical traits in both males and females in a panel of 100 inbred strains of mice (HMDP). The natural variation in Lcn2 expression across the HMDP exhibits high heritability, and genetic mapping suggests that it is regulated in part by Lipin1 gene variation. The correlation analyses revealed striking tissue dependent sex differences in obesity, insulin resistance, hepatic steatosis, and dyslipidemia. To understand the causal relationships, we examined the effects of expression of LCN2 selectively in liver or adipose. On a Lcn2-null background, LCN2 expression in white adipose promoted metabolic disturbances in females but not males. It acted in an autocrine/paracrine manner, resulting in mitochondrial dysfunction and an upregulation of inflammatory and fibrotic genes. On the other hand, on a null background, expression of LCN2 in liver had no discernible impact on the traits examined despite increasing the levels of circulating LCN2 more than adipose LCN2 expression. The mechanisms underlying the sex-specific action of LCN2 are unclear, but our results indicate that adipose LCN2 negatively regulates its receptor, LRP2 (or megalin), and its repressor, ERα, in a female-specific manner and that the effects of LCN2 on metabolic traits are mediated in part by LRP2. CONCLUSIONS: Following up on our population-based studies, we demonstrate that LCN2 acts in a highly sex- and tissue-specific manner in mice. Our results have important implications for human studies, emphasizing the importance of sex and the tissue source of LCN2.


Assuntos
Tecido Adiposo/metabolismo , Lipocalina-2/metabolismo , Adiposidade , Animais , Composição Corporal , Peso Corporal , Feminino , Glucose/análise , Homeostase , Resistência à Insulina , Lipídeos/análise , Lipocalina-2/genética , Lipocalina-2/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Obesidade/metabolismo , Fatores Sexuais
9.
Arterioscler Thromb Vasc Biol ; 39(6): 1045-1054, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31070450

RESUMO

Objective- FMO (flavin-containing monooxygenase) 3 converts bacterial-derived trimethylamine to trimethylamine N-oxide (TMAO), an independent risk factor for cardiovascular disease. We generated FMO3 knockout (FMO3KO) mouse to study its effects on plasma TMAO, lipids, glucose/insulin metabolism, thrombosis, and atherosclerosis. Approach and Results- Previous studies with an antisense oligonucleotide (ASO) knockdown strategy targeting FMO3 in LDLRKO (low-density lipoprotein receptor knockout) mice resulted in major reductions in TMAO levels and atherosclerosis, but also showed effects on plasma lipids, insulin, and glucose. Although FMO3KO mice generated via CRISPR/Cas9 technology bred onto the LDLRKO background did exhibit similar effects on TMAO levels, the effects on lipid metabolism were not as pronounced as with the ASO knockdown model. These differences could result from either off-target effects of the ASO or from a developmental adaptation to the FMO3 deficiency. To distinguish these possibilities, we treated wild-type and FMO3KO mice with control or FMO3 ASOs. FMO3-ASO treatment led to the same extent of lipid-lowering effects in the FMO3KO mice as the wild-type mice, indicating off-target effects. The levels of TMAO in LDLRKO mice fed an atherogenic diet are very low in both wild-type and FMO3KO mice, and no significant effect was observed on atherosclerosis. When FMO3KO and wild-type mice were maintained on a 0.5% choline diet, FMO3KO showed a marked reduction in both TMAO and in vivo thrombosis potential. Conclusions- FMO3KO markedly reduces systemic TMAO levels and thrombosis potential. However, the previously observed large effects of an FMO3 ASO on plasma lipid levels appear to be due partly to off-target effects.


Assuntos
Aterosclerose/metabolismo , Colina/metabolismo , Metilaminas/metabolismo , Oxigenases/genética , Trombose/metabolismo , Animais , Aterosclerose/genética , Colina/farmacologia , Modelos Animais de Doenças , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases/metabolismo , Reação em Cadeia da Polimerase/métodos , Distribuição Aleatória , Valores de Referência , Trombose/fisiopatologia
10.
J Food Sci Technol ; 56(3): 1389-1397, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30956318

RESUMO

Cold pressing technology is a new technology using during the apple juice processing, which involved peeling and deseeding of apples at low temperature. The phenolics of apple juice, apple vinegar and apple pomace generated by cold pressing and traditional process were investigated. The results showed that the total phenols and flavanols of cold pressing apple juice were lower than those of traditional process. The total phenols content of peel pomace extract was significantly higher than that of the pulp pomace by almost tenfold, which showed that the peels and seeds were valuable sources of phenolic compounds. The total phenols of apple vinegars were significantly different. The predominant compounds in apple products were phloridzin and chlorogenic acid, while the apple pomaces based on cold pressing technology had significantly high content of phenolic compounds, indicating that the cold pressing technology could facilitated the use of apple pomace for bioactive compounds.

11.
Antioxidants (Basel) ; 8(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641857

RESUMO

(1) Background: Paraoxonase 2 (PON2) is a ubiquitously expressed protein localized to endoplasmic reticulum and mitochondria. Previous studies have shown that PON2 exhibits anti-oxidant and anti-inflammatory functions, and PON2-deficient (PON2-def) mice are more susceptible to atherosclerosis. Furthermore, PON2 deficiency leads to impaired mitochondrial function. (2) Methods: In this study, we examined the susceptibility of PON2-def mice to diet-induced obesity. (3) Results: After feeding of an obesifying diet, the PON2-def mice exhibited significantly increased body weight due to increased fat mass weight as compared to the wild-type (WT) mice. The increased adiposity was due, in part, to increased adipocyte hypertrophy. PON2-def mice had increased fasting insulin levels and impaired glucose tolerance after diet-induced obesity. PON2-def mice had decreased oxygen consumption and energy expenditure. Furthermore, the oxygen consumption rate of subcutaneous fat pads from PON2-def mice was lower compared to WT mice. Gene expression analysis of the subcutaneous fat pads revealed decreased expression levels of markers for beige adipocytes in PON2-def mice. (4) Conclusions: We concluded that altered systemic energy balance, perhaps due to decreased beige adipocytes and mitochondrial dysfunction in white adipose tissue of PON2-def mice, leads to increased obesity in these mice.

12.
Food Chem ; 281: 236-241, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658753

RESUMO

A gas chromatography-mass spectrometry (GC-MS) method with selected ion monitoring (SIM) was developed and validated for identification and quantitative analysis of three phytosteryl esters, i.e., campesteryl oletate, stigmasteryl oletate and ß-sitosteryl oletate. The method is simple and efficient and achieved good separation of the three phytosteryl esters in 10 min without saponification and liquid-liquid extraction. A calibration curve for the three phytosteryl esters had a correlation coefficient (R2) better than 0.993. Detection limits were 0.42 mg/mL for campesteryl oletate, 0.32 mg/mL for stigmasteryl oletate and 0.80 mg/mL for ß-sitosteryl oletate. The relative standard deviations (RSD) were within 5.47% for precision and stability for three edible oil samples. Recoveries were from 89.85% to 97.65% for each of the phytosteryl esters. These results suggest that the method can be used to identify and quantify the phytosteryl esters in oil samples.


Assuntos
Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas , Óleo de Milho/química , Análise de Alimentos , Limite de Detecção , Óleos de Plantas/química , Reprodutibilidade dos Testes , Óleo de Farelo de Arroz/química , Sensibilidade e Especificidade , Triticum/química
13.
J Sci Food Agric ; 99(7): 3381-3390, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30584804

RESUMO

BACKGROUND: Red-fleshed apples are a great source of natural colorants and functional food ingredients because of their high anthocyanin content. Generally, anthocyanins are highly unstable after extraction, which limits their wide applications in the food and pharmaceutical industries. This study was aimed at investigating the effects of combining copigmentation with encapsulation on the stability of anthocyanins from red-fleshed apples. In this study, red-fleshed apple anthocyanins were copigmented with caffeic acid, and then the copigmented complexes were encapsulated using gum arabic and maltodextrin using spray drying and freeze drying. RESULTS: All anthocyanin microcapsules had high encapsulation efficiencies ranging from 93.84 to 96.85% with mean hydrodynamic diameter smaller than 350 nm. After heating at 80 °C for 2 h, the dispersions of microencapsulated anthocyanins with copigments exhibited the highest absorbance values at λmax (515 nm) (P < 0.05). Light stability experiments demonstrated that the half-life of the red-fleshed apple anthocyanins increased from 5 to 12 days after being treated with copigmentation and encapsulation. The drying methods (spray/freeze drying) did not significantly influence the stability of the microencapsulated anthocyanins. CONCLUSIONS: Applying copigmentation and spray-drying encapsulation in tandem has great potential for enhancing the stability of red-fleshed apple anthocyanins. Thus, such anthocyanins with enhanced stability may be increasingly used in the food and pharmaceutical industries as value-added natural food pigments. © 2018 Society of Chemical Industry.


Assuntos
Antocianinas/química , Frutas/química , Malus/química , Extratos Vegetais/química , Cor , Composição de Medicamentos , Goma Arábica/química , Polissacarídeos/química
14.
Cell Metab ; 27(5): 1138-1155.e6, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719227

RESUMO

Inter-tissue communication via secreted proteins has been established as a vital mechanism for proper physiologic homeostasis. Here, we report a bioinformatics framework using a mouse reference population, the Hybrid Mouse Diversity Panel (HMDP), which integrates global multi-tissue expression data and publicly available resources to identify and functionally annotate novel circuits of tissue-tissue communication. We validate this method by showing that we can identify known as well as novel endocrine factors responsible for communication between tissues. We further show the utility of this approach by identification and mechanistic characterization of two new endocrine factors. Adipose-derived Lipocalin-5 is shown to enhance skeletal muscle mitochondrial function, and liver-secreted Notum promotes browning of white adipose tissue, also known as "beiging." We demonstrate the general applicability of the method by providing in vivo evidence for three additional novel molecules mediating tissue-tissue interactions.


Assuntos
Sistema Endócrino/metabolismo , Homeostase , Lipocalinas/metabolismo , Proteômica/métodos , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo
15.
J Agric Food Chem ; 66(23): 5879-5885, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29806774

RESUMO

Lycopene plays an important role as an antioxidative and anticancer agent, and is an increasingly valuable commodity in the global market. Rhodobacter sphaeroides, a carotenogenic and phototrophic bacterium, is an efficient and practical host for carotenoid production. Herein, we explored the potential of metabolically engineered Rb. sphaeroides as a novel platform to produce lycopene. The basal lycopene-producing strain was generated by introducing an exogenous crtI4 from Rhodospirillum rubrum to replace the native crtI3 and deleting crtC in Rb. sphaeroides. Furthermore, knocking out zwf blocked the competitive pentose phosphate pathway and improved the lycopene content by 88%. Finally, the methylerythritol phosphate pathway was reinforced by integration of dxs combined with zwf deletion, which further increased the lycopene content. The final engineered strain produced lycopene to 10.32 mg/g dry cell weight. This study describes a new lycopene producer and provides insight into a photosynthetic bacterium as a host for lycopene biosynthesis.


Assuntos
Carotenoides/biossíntese , Engenharia Metabólica/métodos , Rhodobacter sphaeroides/metabolismo , Antineoplásicos , Antioxidantes , Licopeno , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter sphaeroides/genética
16.
Cell Syst ; 6(1): 103-115.e7, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361464

RESUMO

The etiology of non-alcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is poorly understood. To understand the causal mechanisms underlying NAFLD, we conducted a multi-omics, multi-tissue integrative study using the Hybrid Mouse Diversity Panel, consisting of ∼100 strains of mice with various degrees of NAFLD. We identified both tissue-specific biological processes and processes that were shared between adipose and liver tissues. We then used gene network modeling to predict candidate regulatory genes of these NAFLD processes, including Fasn, Thrsp, Pklr, and Chchd6. In vivo knockdown experiments of the candidate genes improved both steatosis and insulin resistance. Further in vitro testing demonstrated that downregulation of both Pklr and Chchd6 lowered mitochondrial respiration and led to a shift toward glycolytic metabolism, thus highlighting mitochondria dysfunction as a key mechanistic driver of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/genética , Genômica/métodos , Células HEK293 , Humanos , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos/genética , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Proteômica/métodos , Proteínas Ribossômicas/genética , Transcriptoma
19.
Cell Rep ; 19(12): 2451-2461, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636934

RESUMO

Emerging evidence suggests that microbes resident in the human intestine represent a key environmental factor contributing to obesity-associated disorders. Here, we demonstrate that the gut microbiota-initiated trimethylamine N-oxide (TMAO)-generating pathway is linked to obesity and energy metabolism. In multiple clinical cohorts, systemic levels of TMAO were observed to strongly associate with type 2 diabetes. In addition, circulating TMAO levels were associated with obesity traits in the different inbred strains represented in the Hybrid Mouse Diversity Panel. Further, antisense oligonucleotide-mediated knockdown or genetic deletion of the TMAO-producing enzyme flavin-containing monooxygenase 3 (FMO3) conferred protection against obesity in mice. Complimentary mouse and human studies indicate a negative regulatory role for FMO3 in the beiging of white adipose tissue. Collectively, our studies reveal a link between the TMAO-producing enzyme FMO3 and obesity and the beiging of white adipose tissue.


Assuntos
Metilaminas/sangue , Obesidade/enzimologia , Oxigenases/fisiologia , Gordura Subcutânea/enzimologia , Adipócitos Bege/enzimologia , Animais , Diabetes Mellitus Tipo 2/sangue , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Obesidade/patologia , Gordura Subcutânea/patologia , Gordura Subcutânea/fisiopatologia
20.
Plant Foods Hum Nutr ; 71(4): 444-449, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787697

RESUMO

This study was designed to investigate the inhibition effect and mechanism of total flavonoids, myricetin and quercetin extracted from Hovenia dulcis Thunb. on α-amylase and α-glucosidase in order to explore the potential use of Hovenia flavonoids in alleviating postprandial hyperglycemia. The results demonstrate that total flavonoids, myricetin, and quercetin were effective inhibitors of α-amylase with IC50 values of 32.8, 662 and 770 µg ml-1, respectively. And all three were effective inhibitors of α-glucosidase with IC50 values of 8, 3 and 32 µg ml-1, respectively. Enzyme kinetics tests and Lineweaver-Burk results showed the inhibition effects of total flavonoids, myricetin and quercrtin on α-amylase were all reversible and competitive, and the effects on α-glucosidase were all reversible but non-competitive. This study revealed that Hovenia flavonoids, especially myricetin, are effective and promising functional foods in alleviating type 2 diabetes mellitus.


Assuntos
Flavonoides/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Quercetina/farmacologia , Rhamnaceae/química , alfa-Amilases/antagonistas & inibidores , Flavonoides/análise , Alimento Funcional , Hipoglicemiantes/análise , Concentração Inibidora 50 , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Quercetina/análise , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...